Thalamic bursting in rats during different awake behavioral states.

نویسندگان

  • E E Fanselow
  • K Sameshima
  • L A Baccala
  • M A Nicolelis
چکیده

Thalamic neurons have two firing modes: tonic and bursting. It was originally suggested that bursting occurs only during states such as slow-wave sleep, when little or no information is relayed by the thalamus. However, bursting occurs during wakefulness in the visual and somatosensory thalamus, and could theoretically influence sensory processing. Here we used chronically implanted electrodes to record from the ventroposterior medial thalamic nucleus (VPM) and primary somatosensory cortex (SI) of awake, freely moving rats during different behaviors. These behaviors included quiet immobility, exploratory whisking (large-amplitude whisker movements), and whisker twitching (small-amplitude, 7- to 12-Hz whisker movements). We demonstrated that thalamic bursting appeared during the oscillatory activity occurring before whisker twitching movements, and continued throughout the whisker twitching. Further, thalamic bursting occurred during whisker twitching substantially more often than during the other behaviors, and a neuron was most likely to respond to a stimulus if a burst occurred approximately 120 ms before the stimulation. In addition, the amount of cortical area activated was similar to that during whisking. However, when SI was inactivated by muscimol infusion, whisker twitching was never observed. Finally, we used a statistical technique called partial directed coherence to identify the direction of influence of neural activity between VPM and SI, and observed that there was more directional coherence from SI to VPM during whisker twitching than during the other behaviors. Based on these findings, we propose that during whisker twitching, a descending signal from SI triggers thalamic bursting that primes the thalamocortical loop for enhanced signal detection during the whisker twitching behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Responses of a Thalamic Neuron to Formalin Induced Lasting Pain in Behaving Mice

Thalamocortical (TC) neurons are known to relay incoming sensory information to the cortex via firing in tonic or burst mode. However, it is still unclear how respective firing modes of a single thalamic relay neuron contribute to pain perception under consciousness. Some studies report that bursting could increase pain in hyperalgesic conditions while others suggest the contrary. However, sinc...

متن کامل

Higher-order thalamic relays burst more than first-order relays.

There is a strong correlation between the behavior of an animal and the firing mode (burst or tonic) of thalamic relay neurons. Certain differences between first- and higher-order thalamic relays (which relay peripheral information to the cortex versus information from one cortical area to another, respectively) suggest that more bursting might occur in the higher-order relays. Accordingly, we ...

متن کامل

Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys.

Thalamic relay cells fire in two distinct modes, burst or tonic, and the operative mode is dictated by the inactivation state of low-threshold, voltage-gated, transient (or T-type) Ca2+ channels. Tonic firing is seen when the T channels are inactivated via membrane depolarization, and burst firing is seen when the T channels are activated from a hyperpolarized state. These response modes have v...

متن کامل

Npgrj_nn_2140 1..3

It is unclear how the complex spatiotemporal organization of ongoing cortical neuronal activity recorded in anesthetized animals relates to the awake animal. We therefore used two-photon population calcium imaging in awake and subsequently anesthetized rats to follow action potential firing in populations of neurons across brain states, and examined how single neurons contributed to population ...

متن کامل

Pain and temperature encoding in the human thalamic somatic sensory nucleus (Ventral caudal): inhibition-related bursting evoked by somatic stimuli.

Stimulus-evoked inhibitory events have not been demonstrated in thalamic spike trains encoding of pain and temperature stimuli. We have now tested the hypothesis that the human thalamic response to mechanical and thermal stimuli is characterized by low-threshold calcium spike (LTS)-associated bursts of high-frequency action potentials preceded by prolonged inhibition. The results included 57 ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 26  شماره 

صفحات  -

تاریخ انتشار 2001